Awan : Misteri, Jenis dan Proses Pembentukannya

Awan adalah massa terlihat dari tetesan air atau beku kristal tergantung di atmosfer di atas permukaan bumi atau lain planet tubuh. Awan juga terlihat massa tertarik oleh gravitasi, seperti massa materi dalam ruang yang disebut awan antar bintang dan nebula. Awan dipelajari dalam ilmu tentang awan atau awan fisika cabang meteorologi..
Di Bumi substansi biasanya kondensasi uap air . Dengan bantuan partikel higroskopis udara seperti debu dan garam dari laut, tetesan air kecil terbentuk pada ketinggian rendah dan kristal es pada ketinggian tinggi bila udara didinginkan untuk jenuh oleh konvektif lokal atau lebih besar mengangkat non-konvektif skala. Pada beberapa kasus, awan tinggi mungkin sebagian terdiri dari tetesan air superdingin. Tetesan dan kristal biasanya sekitar 0,01 mm (0,00039 in) diameter. Para agen yang paling umum dari lift termasuk pemanasan matahari di siang hari dari udara pada tingkat permukaan, angkat frontal yang memaksa massa udara lebih hangat akan naik lebih dari atas sebuah airmass pendingin, dan mengangkat orografik udara di atas gunung. Ketika naik udara, mengembang sebagai tekanan berkurang. Proses ini mengeluarkan energi yang menyebabkan udara dingin. Ketika dikelilingi oleh milyaran tetesan lain atau kristal mereka menjadi terlihat sebagai awan. Dengan tidak adanya inti kondensasi, udara menjadi jenuh dan pembentukan awan terhambat. dalam awan padat memperlihatkan pantulan tinggi (70% sampai 95%) di seluruh terlihat berbagai panjang gelombang. Mereka sehingga tampak putih, setidaknya dari atas. tetesan Cloud cenderung menyebarkan cahaya efisien, sehingga intensitas radiasi matahari berkurang dengan kedalaman ke gas, maka abu-abu atau bahkan gelap kadang-kadang penampilan mereka di dasar awan . awan tipis mungkin tampak telah memperoleh warna dari lingkungan mereka atau latar belakang dan awan diterangi oleh cahaya non-putih, seperti saat matahari terbit atau terbenam, mungkin tampak berwarna sesuai. Awan terlihat lebih gelap di dekat-inframerah karena air menyerap radiasi matahari pada saat- panjang gelombang .

Proses Pembentukan awan

Udara selalu mengandung uap air. Apabila uap air ini meluap menjadi titik-titik air, maka terbentuklah awan. Peluapan ini bisa terjadi dengan dua cara:
  • Apabila udara panas, lebih banyak uap terkandung di dalam udara karena air lebih cepat menyejat. Udara panas yang sarat dengan air ini akan naik tinggi, hingga tiba di satu lapisan dengan suhu yang lebih rendah, uap itu akan mencair dan terbentuklah awan, molekul-molekul titik air yang tak terhingga banyaknya.
  • Suhu udara tidak berubah, tetapi keadaan atmosfir lembap. Udara makin lama akan menjadi semakin tepu dengan uap air.
  • Apabila awan telah terbentuk, titik-titik air dalam awan akan menjadi semakin besar dan awan itu akan menjadi semakin berat, dan perlahan-lahan daya tarik bumi menariknya ke bawah. Hingga sampai satu titik dimana titik-titik air itu akan terus jatuh ke bawah dan turunlah hujan.
  • Jika titik-titik air tersebut bertemu udara panas, titik-titik itu akan menguap dan awan menghilang. Inilah yang menyebabkan itu awan selalu berubah-ubah bentuknya. Air yang terkandung di dalam awan silih berganti menguap dan mencair. Inilah juga yang menyebabkan kadang-kadang ada awan yang tidak membawa hujan.
Proses kondensasi dan pembentukan awan di daerah tropis dan di daerah lintang menengah dan tinggi mempunyai perbedaan yang menyolok. Di daerah tropis umumnya proses kondensasi dan pembentukan awan dapat terjadi pada suhu tinggi (>0 0C) melalui pengangkatan udara atau konveksi yang diakibatkan oleh pemanasan yang kuat. Sedang di daerah lintang menengah dan tinggi proses yang terjadi umumnya karena adanya front yaitu pertemuan massa udara panas dan massa udara dingin. Cuaca di daerah tropis ditandai dengan perubahan yang cepat dan mendadak. Hal ini disebabkan oleh berbagai hal seperti adanya garis ekuator dimana gaya coriolli mendekati nol, adanya ITCZ, ridge dan through, awan-awan konvektif, sel hadley dan sirkulasi walker.
Proses Kondensasi
Dalam atmosfer tetes awan terbentuk pada aerosol yang berfungsi sebagai inti kondensasi atau inti pengembunan. Kecepatan pembentukan tetes tersebut ditentukan oleh banyaknya inti kondensasi. Proses dimana tetes air dari fasa uap terbentuk pada inti kondensasi disebut pengintian heterogen. Adapun pembentukan tetes air dari fasa uap dalam suatu lingkungan murni yang memerlukan kondisi sangat jenuh (supersaturation) disebut pengintian homogen. Pengintian homogen yaitu pembekuan pada air murni hanya akan terjadi pada suhu dibawah -40 0C. Akan tetapi dengan keberadaan aerosol sebagai inti kondensasi maka pembekuan dapat terjadi pada suhu hanya beberapa derajat dibawah 0 0C2.
Inti kondensasi adalah partikel padat atau cair yang dapat berupa debu, asap, belerang dioksida, garam laut (NaCl) atau benda mikroskopik lainnya yang bersifat higroskopis, dengan ukuran 0,001 mm – 10 mm.
Secara singkat proses kondensasi dalam pembentukan awan adalah sebagai berikut :
  • Udara yang bergerak ke atas akan mengalami pendinginan secara adiabatik sehingga kelembaban nisbinya (RH) akan bertambah, tetapi sebelum RH mencapai 100 %, yaitu sekitar 78 % kondensasi telah dimulai pada inti kondensasi yang lebih besar dan aktif. Perubahan RH terjadi karena adanya penambahan uap air oleh penguapan atau penurunan tekanan uap jenuh melalui pendinginan.
  • Tetes air kemudian mulai tumbuh menjadi tetes awan pada saat RH mendekati 100 %. Karena uap air telah digunakan oleh inti-inti yang lebih besar dan inti yang lebih kecil kurang aktif tidak berperan maka volume tetes awan yang terbentuk jauh lebih kecil dari jumlah inti kondensasi.
  • Tetes awan yang terbentuk umumnya  mempunyai jari-jari 5 – 20 mm. Tetes dengan ukuran ini akan jatuh dengan kecepatan 0,01 – 5 cm/s sedang kecepatan aliran udara ke atas jauh lebih besar sehingga tetes awan tersebut tidak akan jatuh ke bumi. Bahkan jika kelembaban udara kurang dari 90 % maka tetes tersebut akan menguap. Untuk dapat jatuh ke bumi tanpa menguap maka diperlukan suatu tetes yang lebih besar yaitu sekitar 1 mm (1000 mm), karena hanya dengan ukuran demikian tetes tersebut dapat mengalahkan gerakan udara ke atas (Neiburger, et. al., 1995).
  • Jadi perbedaan antara tetes awan dan tetes hujan adalah pada ukurannya.
  • Jika sebuah awan tumbuh secara kontinu, maka puncak awan akan melewati isoterm 00C. Tetapi sebagian tetes-tetes awan masih berbentuk cair dan sebagian lagi berbentuk padat atau kristal-kristal es jika terdapat inti pembekuan. Jika tidak terdapat inti pembekuan, maka tetes-tetes awan tetap berbentuk cair hingga mencapai suhu -40 0C bahkan lebih rendah lagi2.
Awan dan Presipitasi Tropis
Presipitasi merupakan jatuhan hydrometeor yang sampai ke bumi baik dalam bentuk cair (hujan) ataupun padat (es atau salju). Di wilayah tropis seperti Indonesia presipitasi lebih didefinisikan sebagai hujan karena sangat jarang terjadi presipitasi dalam bentuk jatuhan keping es.
Awan dan presipitasi merupakan bagian dari siklis hidrologi dan merupakan proses lanjutan dari kondensasi yaitu perubahan fasa dari uap air menjadi tetes-tetes air . Kondensasi terjadi pada berbagai kondisi seperti perubahan volume udara, suhu, tekanan dan kelembaban, apabila
  • Udara didinginkan sampai titik embunnya meskipun volumenya tetap.
  • Volume udara bertambah tanpa ada penambahan panas karena udara didinginkan melalui ekspansi adiabatik.
  • Perubahan suhu dan volume mengurangi kapasitas kebasahan udara.
Di daerah tropis pembentukan awan terjadi pada suhu tinggi dan dengan kelembaban yang tinggi juga. Dengan demikian awan yang terbentuk mempunyai kandungan air-cair tinggi.
Presipitasi atau hujan berdasarkan mekanisme dominan dari gerak vertikal dibedakan menjadi3 :
  1. Presipitasi stratiform. Yaitu presipitasi dari awan stratifom yang terbentuk karena gerak vertikal yang kontinu dan menyebar luas. Hal ini terjadi karena kenaikan frontal atau orografik arau konvergensi dalam skala besar. Presipitasi dari awan stratiform tumbuh dari proses kristal es. Awan ini mempunyai kadar air lebih rendah sehingga koalisensi tidak efektif. Masa hidup awan relatif lama. Jika suhu lingkungan awan mencapai -15 0C, maka proses kristal es dapat menyebabkan presipitasi.
  2. Presipitasi konvektif. Yaitu presipitasi dari awan konvektif karena kondisi udara yang tidak stabil yang menyebabkan gerak vertikal tetapi terlokalisir dalam skala yang tidak luas. Hujan yang terjadi umumnya tiba-tiba dan sangat lebat (heavy shower) tetapi terjadi dalam waktu yang singkat. Dalam awan konvektif waktu presipitasi lebih pendek tetapi kadar air lebih tinggi dari stratiform sehingga koalisensi sangat berperan menghasilkan hujan.
Jadi mekanisme presipitasi antara awan stratiform dan awan konvektif sangat berbeda. Sebagai pendekatan, hujan kontinu dapat dipandang sebagai keadaan mantap (steady-state process) dimana besaran awan dapat berubah dengan ketinggian tetapi konstan terhadap waktu pada ketinggian tertentu. Sebaliknya, hujan shower dapat didekati sebagai sistem dimana sifat-sifat awan berubah dengan waktu tetapi konstan terhadap ketinggian pada waktu tertentu
Bakteri dan jamur Membantu Pembentukan Awan
Jenis mikroorganisme bisa berupa bakteri, atau jamur. Dengan ukurannya yang sangat kecil, bakteri dan jamur bisa menempuh perjalanan jauh, bahkan sampai ke awan. Menurut percobaan yang dilakukan oleh peneliti, bakteri dan jamur yang bergabung bersama debu dan partikel lain di udara dapat membantu pembentukan es inti yang merupakan kerangka dari awan. Es inti, yang terdiri dari air dan es yang ada di atmosfir akan tumbuh dan membentuk awan penghasil hujan. “Saat ini kami sedang meneliti sebesar apa manfaat bakteri dan jamur dalam pembuatan awan hujan,” kata salah satu tim peneliti dari Scripps Institution of Oceanography, Amerika Serikat, Kim Prather.
Untuk mengukur kandungan bakteri dan jamur dalam awan para peneliti menggunakan alat yang dinamakan spektrometer. Dengan alat tersebut dapat diketahui partikel-partikel apa saja yang terkandung dalam awan termasuk bakteri dan jamur. Hasilnya hampir 50 persen awan mengandung debu-debu mineral. Menurut para peneliti jamur dan bakteri yang ada di alam menyatu bersama debu dan dan membantu pembentukan awan hujan. Jadi, hujan yang selalu kita lihat juga mengandung jamur dan bakteri.

Jenis-jenis awan

awan menurut bentuknya terbagi menjadi beberapa jenis :
  1. Awan Commulus, yaitu awan yang bergumpal dan bentuk dasarnya horizontal
  2. Awan Stratus, yaitu awan tipis yang tersebar luas dan menutupi langit secara merata
  3. Awan Cirrus, yaitu awan yang berdiri sendiri, halus dan berserat, sering terdapat kristal es tetapi tak menimbulkan hujan

Berbagai Jenis Awan

Awan Tengah

Awan Tengah cenderung terbentuk pada 6.500 kaki (2.000 m), tetapi dapat terbentuk pada ketinggian sampai 13.000 kaki (4.000 m), 23.000 kaki (7.000 m) atau 25.000 kaki (8.000 m), tergantung pada daerah. Umumnya lebih hangat iklim, semakin tinggi dasar awan. Nimbostratus awan kadang-kadang disertakan dengan awan menengah. The World Meterological Organisasi mengklasifikasikan Nimbostratus sebagai awan menengah yang dapat mengentalkan ke dalam rentang ketinggian rendah selama hujan.
Awan di Keluarga B meliputi:
  • Genus Altocumulus (Ac): Sebuah lapisan awan konveksi yang terbatas biasanya dalam bentuk patch tidak teratur atau bulat dalam kelompok massa, garis, atau gelombang. altocumulus Tinggi mungkin mirip cirrocumulus tetapi basis menunjukkan setidaknya beberapa bayangan abu-abu terang.
    • Spesies Altocumulus stratiformis (Ac str): Sheets atau patch yang relatif datar altocumulus.
    • Spesies Altocumulus lenticularis (Ac len): Lens altocumulus berbentuk.
    • Spesies Altocumulus castellanus (Ac cas): altocumulus menara.
    • Spesies Altocumulus floccus (Ac flo): altocumulus berumbai.
  • Genus Altostratus (As):-konvektif atau tembus non cadar Buram abu-abu biru-abu-abu awan / yang sering bentuk front bersama hangat dan sekitar daerah tekanan rendah di mana mungkin menebal ke Nimbostratus.
Altostratus tidak dibagi lagi menjadi spesies.

Awan Rendah

Awan rendah, yaitu awan yang mempunyai ketinggian dasar kurang dari 2 km meliputi jenis stratus (st), stratocumulus (sc), cumulus (cu), cumulonimbus (cb) dan nimbostratus(ns). Khusus cu, cb dan ns, mempunyai dasar sebagai awan rendah namun tumbuh secara vertikal yang puncaknya mencapai awan tinggi.
Ini ditemukan dari dekat permukaan hingga 6.500 kaki (2.000 m) [2] dan termasuk Stratus genus. Ketika awan Stratus kontak dengan tanah, mereka disebut kabut , meskipun tidak semua bentuk kabut dari Stratus.
Awan di Keluarga C1 meliputi:
  • Genus stratocumulus (Sc): Sebuah lapisan awan konveksi yang terbatas biasanya dalam bentuk patch teratur atau massa bulat mirip dengan altocumulus tetapi elemen yang lebih besar memiliki dengan bayangan abu-abu yang lebih dalam.
    • Spesies stratocumulus stratiformis (Sc str): Sheets atau patch yang relatif datar stratocumulus.
    • Spesies stratocumulus lenticularis (Sc len): Lens stratocumulus berbentuk.
    • Spesies stratocumulus castellanus (Sc cas): stratocumulus menara.
  • Genus Stratus (St): Sebuah lapisan seragam non-konvektif awan yang menyerupai kabut tapi tidak beristirahat di tanah.
    • Spesies nebulosus Stratus (St cotok): rata selubung Stratus.
    • Spesies Stratus fractus (St fra): kasar putus selembar Stratus.

Awan Rendah Tengah

Awan menengah, yaitu awan ketinggian dasar antara 2-7 km, meliputi jenis altocumulus(ac) dan altostratus (as)
Awan ini dapat didasarkan manapun dari permukaan dekat sekitar 10.000 kaki (3.000 m). Cumulus biasanya bentuk pada rentang ketinggian rendah tapi dasar akan naik ke bagian bawah kisaran menengah saat kondisi kelembaban relatif sangat rendah. Nimbostratus biasanya bentuk dari altostratus di tengah rentang ketinggian tapi dasar mungkin mereda ke kisaran rendah selama precipitaion. Kedua jenis awan dapat mencapai ketebalan yang signifikan dan kadang-kadang diklasifikasikan sebagai awan vertikal (Keluarga D), terutama di Eropa. [4] Namun, cumulus biasa, menurut definisi, tidak sesuai dengan tingkat vertikal yang menjulang cumulus (kumulus congestus) atau paling cumulonimbus . Nimbostratus Sangat tebal dapat perkiraan cumulus menjulang, tetapi jatuh juga pendek tingkat vertikal awan cumulonimbus berkembang dengan baik.
Awan di Keluarga meliputi C2:
  • Genus Cumulus [5] (Cu): Awan konveksi bebas dengan cut datar basa-jelas dan puncak kubah. Menjulang cumulus (kumulus congestus) biasanya digolongkan sebagai awan pembangunan vertikal (Keluarga D).
    • Spesies Cumulus fractus (Cu fra): awan Cumulus dipecah menjadi fragmen dan mengubah compang-camping.
    • Spesies Cumulus humilis (Cu hum): awan cumulus kecil biasanya hanya dengan abu-abu terang di bawah naungan.
    • Spesies mediocris Cumulus (Cu med): awan Cumulus ukuran sedang dengan bayangan abu-abu menengah bawah.
  • Genus Nimbostratus (Ns): Sebuah lapisan abu-abu gelap konvektif non-baur yang terlihat lemah menerangi dari dalam. Ini adalah awan yang biasanya bentuk curah hujan di sepanjang front hangat dan sekitar daerah tekanan rendah. Nimbostratus tidak dibagi lagi menjadi spesies.

Awan Vertikal

  • Genus cumulonimbus (Cb): massa menjulang berat awan konvektif bebas yang berhubungan dengan badai guntur dan kamar mandi. Mereka membentuk dalam massa udara yang sangat stabil, khususnya sepanjang front yang bergerak cepat dingin.
    • Spesies calvus cumulonimbus (Cb cal): awan cumulonimbus dengan sangat tinggi memotong puncak kubah-jelas mirip dengan gumpalan awan yang menjulang tinggi.
    • Spesies capillatus cumulonimbus (Cb cap): awan cumulonimbus dengan puncak yang sangat tinggi yang telah menjadi berserat karena adanya kristal es.
Fitur Supplimentary inkus capillatus cumulonimbus (Cb ink cap): Sebuah cumulonimbus inkus atas awan adalah salah satu yang telah menyebar ke bentuk landasan yang jelas sebagai akibat dari memukul lapisan inversi di bagian atas troposfer. Fitur Supplimentary dengan mammatus cumulonimbus (Cb Mam): Sebuah dasar awan mammatus ditandai oleh gelembung-tonjolan ke bawah seperti menghadap disebabkan oleh downdrafts lokal dalam awan. WMO Resmi jangka cumulonimbus Mama.
  • Genus Cumulus (Cu) [6] [7]
    • Spesies Cumulus congestus (WMO: Cu Con / ICAO: TCU): Menara awan cumulus ukuran vertikal besar, biasanya dengan dasar abu-abu gelap.
    • Pyrocumulus (tidak ada singkatan resmi): awan Cumulus yang terkait dengan letusan gunung berapi dan kebakaran skala besar. Tidak diakui oleh WMO sebagai genus yang berbeda atau spesies.

Awan Tinggi

Awan tinggi, yaitu awan dengan ketinggian dasar lebih dari 7 km, meliputi cirrus (ci),cirrocumulus (cc) dan cirrostratus (cs). Bentuk awan tinggi antara 10.000 dan 25.000 kaki (3.000 dan 8.000 m) di daerah kutub , 16.500 dan 40.000 kaki (5.000 dan 12.000 m) di daerah beriklim sedang dan 20.000 dan 60.000 kaki (6.000 dan 18.000 m) di daerah tropis . [ 2]
Awan di Keluarga A meliputi:
  • Genus Cirrus (Ci): berserat gumpalan awan putih kristal es halus yang muncul jelas di langit biru. Secara umum non-konvektif kecuali castellanus dan spesies floccus.
    • Spesies fibratus Cirrus (Ci fi): cirrus berserat tanpa jumbai atau kait.
    • Spesies uncinus Cirrus (Ci UNC): Hooked cirrus filamen.
    • Spesies spissatus Cirrus (Ci spi): cirrus Patchy padat.
    • Spesies castellanus Cirrus (Ci cas): Sebagian cirrus menara.
    • Spesies floccus Cirrus (Ci flo): Sebagian cirrus berumbai.
  • Genus Cirrocumulus (Cc): Sebuah lapisan awan konveksi terbatas muncul sebagai massa bulat kecil putih atau serpih dalam kelompok atau baris dengan riak seperti pasir di pantai.
    • Spesies Cirrocumulus stratiformis (Cc str): Sheets atau patch yang relatif datar cirrocumulus.
    • Spesies Cirrocumulus lenticularis (Cc len): Lens cirrocumulus berbentuk.
    • Spesies Cirrocumulus castellanus (Cc cas): cirrocumulus menara.
    • Spesies Cirrocumulus floccus (Cc flo): cirrocumulus berumbai.
  • Genus Cirrostratus (Cs): A non-konvektif cadar tipis yang biasanya menimbulkan halos. Matahari dan bulan terlihat di garis yang jelas. Biasanya mengental menjadi menjelang altostratus depan hangat atau daerah tekanan rendah.
    • Spesies Cirrostratus fibratus (Cs fib): cirrostratus berserat kurang terlepas dari cirrus.
    • Spesies Cirrostratus nebulosus (Cs neb): rata selubung cirrostratus.

Kontroversi Awan Gempa

Awan gempa adalah awan yang diduga sebagai tanda akan terjadinya gempa bumi. Awan aneh ini bentuknya memanjang seperti asap yang ke luar dari pesawat. Seorang ilmuwan India, Varahamihira (505 – 587) dalam bab 32 dari karyanya Brihat Samhita membahas beberapa tanda-tanda peringantan akan adanya gempa bumi, misalnya: kelakuan binatang-binatang yang tidak seperti biasanya, pengaruh astrologi, pergerakan bawah air tanah dan formasi awan yang aneh, yang muncul seminggu sebelum terjadinya gempa bumi.
Fenomena alam ini walaupun telah diamati oleh Shou akan tetapi belum dapat diterima secara alamiah karena kurangnya aspek-aspek fisis yang mendukungnya. Beberapa pendapat menyatakan bahwa hal tersebut hanyalah merupakan kebetulan, sedangkan sumber lain menganjurkan agar hal ini ditelaah lebih lanjut
Sejak tahun 1990, seorang pensiunan ahli kimia di Kalifornia, Zhonghao Shou, telah membuat lusinan prakiraan gempa bumi berdasarkan pola-pola awan hasil pencitraan oleh satelit. Tekanan dan gesekan dari tanah dapat menguapkan air jauh sebelum gempa bumi terjadi, pendapat Shou, dan awan yang terbentuk akibat mekanisme ini memiliki bentuk yang amat berbeda dengan awan-awan pada umumnya. Shou mengungkapkan, dari 36 awan yang diteliti, 29 terbukti menjadi awal pertanda gempa. Prediksinya yang paling terkenal adalah ketika dia mengamati awan berbentuk garis memanjang dengan ekor mengarah ke Barat Laut. 1
Sebagai teori alternatif, didukung oleh para penganut model Listrik Semesta (Electric Universe), menyatakan bahwa beberapa gempa bumi kemungkinan memiliki karakteristik listrik, termasuk di dalamnya fenomena aural, radio dan gangguan VLF (Very Low Frequency). 2
Dewasa ini sebagai prakiraan gempa bumi, umumnya para ahli lebih mempercayai hasil dari alat-alat seismologi.

Peristiwa terkait

  • Beberapa gempa yang terjadi antara tahun 1993 sampai 2006 dikaitkan dengan munculnya formasi awan ini sebagai tanda-tanda.
  • Di Kobe Jepang, delapan hari sebelum terjadi gempa dahsyat pada tahun 1995, ditandai dengan kemunculan awan seperti itu.
  • Awan serupa juga muncul sehari sebelum terjadinya gempa di Kagoshima tahun 1993.
  • Gempa di Niigata tahun 2004 terjadi cuma empat jam setelah kemunculan awan aneh seperti itu.
  • Hal yang sama juga terjadi di Yogyakarta pada tahun 2006, awan seperti itu muncul pada tanggal 3 Mei 2006 tepat beberapa minggu sebelum gempa dahsyat mengguncang Yogyakarta pada tangal 27 Mei 2006.
  • China bahkan sudah membicarakan tanda alam tersebut tahun 1622, tepatnya 25 Oktober, di mana terjadi gempa besar 7 skala Richter di Guyuan, Provinsi Ningxia, China barat. Masyarakat China barat saat itu melihat ada awan aneh sebelum gempa, Tahun 1978, sehari sebelum gempa Kanto di Jepang, Wali Kota Kyoto Kagida melihat awan aneh. Ia mengaitkan gempa dengan awan tersebut. Fenomena itu lalu disebut Kagida Cloud atau Awan Kagida, yang memperkirakan sumber gempa di titik paling tengah awan gempa. Namun, tahun 1985 pendapatnya dibantah. Sumber gempa diduga di titik terus terjadinya pembentukan awan. Satelit IndoEx memperlihatkan rekaman-rekaman fenomena gempa diiringi awan.
  • Pada 20 Desember 2003, langit sekitar Bam, Iran, muncul awan memanjang. Empat hari kemudian terjadi gempa 6,8 SR. Pada 17 Januari 1994 muncul awan seperti asap roket di sekitar Northride, Amerika Serikat. Sehari kemudian terjadi gempa. Pada 13 Februari 1994 muncul awan berbentuk gelombang di Northride dan 20 Maret 1994 ada gempa besar.
  • Pada 31 Agustus 1994 ada awan bentuk bulu ayam di Northern California, Amerika Serikat. Pada 1 September 1994 terjadi gempa di daerah itu. Awan seperti sinar terjadi di kawasan Joshua Tree, Amerika Serikat, 22 Juli 1996, dan 23 hari kemudian terjadi gempa.

0 komentar:

Posting Komentar

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | JCPenney Coupons